AFOMP President’s Message

Kwan–Hoong Ng, Ph.D, DABMP
President, AFOMP

It is my pleasure to pen a few words upon taking up the AFOMP presidency. But first let me thank Professor Kiyonari Inamura for having worked so hard to build up AFOMP and then handed it to me. AFOMP has been charged with the important task of promoting medical physics in the Asia and Oceania regions by providing a solid platform for closer collaboration and mutual support among member organizations. We must step up our efforts to stay relevant and raise our profession to the level of that of our esteemed colleagues in other established disciplines.

My vision for the way forward include the followings:
1. Forge closer ties with regional radiological and oncological sister organizations.
2. Encourage and promote research collaboration between medical physicists and clinicians.
3. Enhance education and training standards.
4. Initiate campaigns to raise the profession’s visibility.
5. Increase our professional practice standard.

I urge you to ponder upon what I have shared with you, and to carry out efforts in your own academic institution, hospital or organization that will bring together medical physicists from around the region. Let us work together to stay relevant in our quest to make this world a better place.

“To achieve more, we should imagine together”

New Executive Officers and Sub-Committee Chairmen of AFOMP

The AFOMP Council elected the following as Executive Officers of AFOMP during AFOMP Council Meeting which was held in Chiang Mai, Thailand on Oct. 24, 2009. Sub-Committee Chairmen were recommended by AFOMP President.

Executive Officers

President: Kwan–Hoong Ng (Malaysia)
Vice-President: Yimin Hu (China)
Past President: Kiyonari Inamura (Japan)
Secretary General: Tae-Suk Suh (Korea)
Treasurer: Anchali Krisanachinda (Thailand)

Sub-Committee Chairmen

Education and Training Committee: Hee-Joung Kim (Korea)
Professional Development Committee: Howell Round (New Zealand)
Scientific Committee: Yaoxiong Huang (China)
Funding Committee: Kiyonari Inamura (Japan)

Table of Contents

- President’s Message & New officers …….. 1
- Report of WC2009- AFOMP related topics in Munich …………………….. 2
- AFOMP Quiz …………………………………. 3
- Report of ETC ……………………………… 5
- Report of PDC ……………………………… 6
- Education and Training of Medical Physicists in Taiwan ……………….. 8
- Report of AORPM ………………………. 9
- Report of Conferences in Australia ……… 11
- Report from Singapore …………………… 12
- Report of 9th AOCMP …………………….. 14
- Report of Travel Grant Recipients ……… 16
1. Professor Barry J. Allen, Past President of AFOMP and Immediate Past President of IOMP was inaugurated as President of IUPESM. Following figure identify the relation of IUPESM with AFOMP.

He was awarded for contribution as IOMP President, and Plaque of appreciation was given to him.

2. Dr. Yin Kin Cheung and Dr. Madan Rehani took up their new posts of President Elect and Secretary General of IOMP respectively.

3. A symposium “Education and Training of Medical Physics in the AFOMP Area” was held and we discussed this issue enthusiastically following presentations. Presenters and audience are from USA, Europe and IAEA as well as from AFOMP countries. Chairs were Kiyonari Inamura and Anchali Krisanachinda.

(1). “Training of Qualified Medical Physicists: Problems and Struggles in AFOMP Region” by Kiyonari Inamura
(2). “Professional Training of Medical Physicists in AFOMP - The Role of IOMP PRC” by Kin Yin Cheung and Raymond Wu (USA)
(3). “The Current Status of Medical Physics in Asia-Oceania” by Tae-Suk Suh
(4). “Medical Physics Training Programme at Chulalongkorn University and evaluation of its effectiveness” by Franco Milano (Italy)
(5). “Creating an Independent International Medical Physics Board” by Raymond Wu (USA)

Discussion was raised by focusing rather concrete problems to be solved, such as availability and acquisition of training program materials from IAEA/RCA or other organizations, and method of certification of qualified MP.

4. Number of authors from AFOMP countries in whole WC2009

The number in both Biomedical Engineering as well as Medical Physics was very many compared with that from other regions of the world. Japan 578, Korea 232, P.R. China 226, Australia 83, Taiwan 64, India 51, New Zealand 22, Malaysia 19, Singapore 15, Indonesia 14, Pakistan 12, Philippines 9, Hong Kong 6, Thailand 5 and Nepal 1. Sum was 1337. Total in WC2009 was 7320, so that 18.3% was shared by AFOMP countries. Top was Germany 35.5%.

5. AFOMP Council Meeting 2009 discussed and decided following matters.

(1) Reconfirmation of AFOMP dues collection in 2009 fiscal year, namely revenue planning in 2009 fiscal year. The amount is 50% of IOMP annual dues. The purpose of utilizing this new income is as follows.

1). Travel expense for visits to countries for cultivation of new AFOMP members.
2). Travel support for young investigators to attend international conferences.
3). Holding of training courses for trainees inside AFOMP member countries.
4). Planning of new membership cultivation.
5). Certification of qualified MP in Asia. As Thailand will complete Radiation Oncology Medical Physics (ROMP) Training in Aug 2009 (RAS 6038), certification for qualified MP in Asia was discussed.
7). Call for candidates of new AFOMP officers.
8). 10th AOCMP in Taipei.
9). Call for Expression of Interest for 11th AOCMP.
10). Cooperation with IAEA.

1) Participation in the New Regional Project RAS/6/059 – Quality Assurance Team for Radiation Oncology (QUATRO) Training in South-East Asia. Project Number: RAS6059 FOA: 6C - Radiosotope and Radiation Treatment. Mrs. Izewska of IAEA asks us to participate to this project. She
talked to us in our Council Meeting. She is very enthusiastic to cooperate with us AFOMP.

2) International Symposium on Standards, Applications and Quality Assurance in Medical Radiation Dosimetry, Vienna, November 2010.

(9) The following awards were proposed:
1) Partially support 1 medical physicist for AFOMP country to WC2009 ($1500)
2) Partially support 5 AFOMP medical physicists of $500 each to 9th AOCMP (total $2500)
3) 3 student’s award of $200 each at 9th AOCMP (total $600) By the way Japan Society of Medical Physics sent 3 awardees to WC2009 by its own system operation.

6. IOMP Council Meeting discussed following matters
(1) 10. ICMP19. WC-20012 Beijing
(2) 12. ICMP 21. WC-2015

7. IOMP Professional Relations Committee (PRC) Meetings were held for three times in Munich, and possibility of International Certification of Medical Physics was discussed. Dr. Kin Yin Cheung the Chairman of the PRC presided the meeting.

6. IOMP Council Meeting discussed following matters
(1) Equipment Donations Programme
(2) Certification of Medical Physicists- Report by Dr. Raymond Wu, Chairman of Task Group on Certification in IOMP
(3) IOMP Policy Statements- Report by Dr. KY Cheung
(4) ILO classification of Medical Physicists- Report by Professor Nueslui/ Dr. KY Cheung

8. AFOMP ETC Meeting at WC2009
(1) National & international initiatives on education and professional training of clinical medical physicists in AFOMP
(2) Professional certification of qualified medical physicists in AFOMP
 1) Needs and objectives
 2) Standard and recognition
 3) Certification format and system
 i) National certification system or international certification system
 ii) Hybrid system
 iii) Implementation strategy

9. IOMP President report was addressed by Barry J. Allen in Council Meeting of IOMP.

 Of all regional organization AFOMP
 is the grandest in scale and heterogeneity,
 covering two thirds of the world’s popu-
 lations. From South Korea and Mongolia
 in the north to New Zealand in the south
 and west to India, AFOMP is developing
 strength and performance. Annual con-
 ferences and industry support point to a
 strong organization, with past presidents
 from Hong Kong, Australia, Japan and
 now Malaysia.

 HTTG seeks to apply our skills in
 medical physics and biomedical engineering to evaluate and obtain solutions for health management in the developing countries. The first HTTG workshop on palliative radiotherapy was held in Saigon in 2008. HTTG reports are now listed on the IUPESM website.

10. Report from AFOMP was presented by Kiyonar Inamurain in IOMP Council Meeting

 AFOMP Executive Council Members have discussed to solve many problems inside AFOMP area with enthusiasm. One of examples is establishment of constant financial revenue by means of collection of AFOMP dues and AFOMP Corporate Membership fee. The new business plan including activities such as cultivation of new AFOMP members and holdings of training courses in provincial area was made. Problem of AFOMP dues has solved, and now asking IOMP officers to collect AFOMP dues together with IOMP dues. One of official journals of AFOMP, BHIJ (Biomedical Imaging and Intervention Journal) published a paper on the survey of medical physics in AFOMP area. That is most valuable report after three reports of the like in the past we carried out. Ninth and 10th AOCMP will be held in 2009 and 2010 in Thailand and Taiwan respectively. As for Eleventh AOCMP, Japan is raising her hand to hold that in 2011.

11. Report from SEAFOMP South-East Asia Federation for Medical Physics was addressed by Anchali Krisanachinda

 As the International Atomic Energy Agency initiated the Regional Cooperative Agreements (RCA) RAS 6038 title “Strengthening of Medical Physics in Asia and Pacific through Education and Training” the meetings were held more often at this region. The status of medical physics in the region had been updated and informed. The IAEA competency training for Radiation Oncology Medical Physicist (ROMP) was started in Thailand in 2007 and Philippines in 2008. The countries planned for ROMP training are Indonesia and Vietnam. The clinical training for Radiation Oncology Medical Physicist will be completed in October 2009 then the training in diagnostic radiology and nuclear medicine will be started in 2010.

12. Topics on International Labor Organization (ILO)

 IOMP has over many years worked to have the profession of medical physics recognized by the International Labor Organization and come under the general heading ‘Health Professionals’ rather than ‘Physics’ in the International Classification of Occupations (ISCO). There have been consultations by ILO and IOMP have lobbied on behalf of its members. Dr. David Hunter, the lead ILO statistician dealing with the International Standard Classification of Occupations gave a presentation at the WC2006. When the final documentation is published in near future, the IOMP will prepare guidance for its members.

Edited by Prof. Kwan-Hoong Ng

An artifact occurred frequently in the exams of pelvis and lateral view of spine, as illustrated in the image. Identify the imaging modality and causes of the artifact. (The answer is found on page 17)

Courtesy of Mei-Yu Yeh, M.S., Medical Physicist, Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Chiayi, Taiwan.
Unfors Xi
Platinum edition

The next generation of Unfors Xi featuring:

Unfors Xi Survey Detector
1200 ms waveform memory
Direct HVL – on mammo too!
New mammo beam qualities

...and more than 20 improvements.

Following many years of success, Unfors unveils a new edition of the highly acclaimed Unfors Xi system. The new Unfors Xi Platinum edition boasts a long list of improved features such as longer waveform memory and the addition of a survey detector for measurements of leakage and scatter radiation—all nicely fitted into one small and durable aluminium case.

The Unfors Xi system can simultaneously measure kVp, dose, dose rate, HVL, pulse, pulse rate, dose/pulse, time and waveforms with the R/F & MAM detector. More possibilities are presented by adding detectors for illuminance and illuminance, CT dose and scatter/leakage applications. Available today or as a future upgrade when the need arises. All components are available as a complete system.

The Unfors Xi Platinum edition offers all features of the Unfors Xi which adds new possibilities and features that can be expected from a manufacturer dedicated to new technology and innovative solutions.

www.unfors.com
Report of the Education and Training Committee

Hee-Jung Kim, Ph.D
ETC Chair, AFOMP

It is my great honor and privilege to serve for next 3 year term as an AFOMP Education and Training Committee (ETC) Chair. The 1st job of my appointment was to recruit AFOMP ETC members including many of them from the current members for continuity with their experiences and expertise, and some of them from new members with various backgrounds. I am very glad to be able to report that there are currently 13 members recruited: Deputy Chair Prof. Arun Chougule (Rajasthan University), Secretary Prof. Byung Chul Cho (Currently Stanford University (To be at Asan Medical Center)), Honorary member Prof. Milton Woo (University of Toronto) and committee members of Prof. Madan Rehani, Prof. HuYiMin, Dr. Kin-yin Cheung, Prof. Anchali Krisananchida, Ms Agnette Peralta, Prof. Anthony Ho-Ling Liu, Prof. Shinichi Wada, Prof. Yoshie Kodera, Mr. Raju Srivastava. The AFOMP ETC roles were previously described as follows:
1. To promote activities related to education and training of AFOMP medical physicists,
2. To develop AFOMP policy statement on education and training of medical physics in AFOMP countries,
3. To study the training needs and develop and make recommendation on syllabus and standards on basic medical physics training courses for AFOMP Physics,
4. To establish an AFOMP accreditation system for medical physics that is best suited for the situation in each country.

In order to accomplish some of the objectives of our committee within next 3 year term, the targeted activities and action plans with priorities need to be defined. The AFOMP ETC supports its mission to advance the science, education, and professional practice of medical physics by both networking among professional organizations and individuals and promoting the education of students, medical physicists, physicians and related professionals. The AFOMP ETC would like to closely collaborate with a counterpart of IOMP, AAPM, and other related organizations, and to serve on work items below. 1. To promote activities related to education and training of AFOMP medical physics by promoting the education, training and professional development of medical physicists, 2. To develop AFOMP policy statement on education and training of medical physics in AFOMP countries, 3. To support and collaborate with the education and training committees of Regional Chapters on matters relating to education and training, including development of training materials and training methodology, 4. To organize workshops and seminars in conjunction with related international conference meetings to promote and assist international education and training initiatives, 5. To study ETC activities of other organizations to adapt to AFOMP societies for promoting high quality educational programs at the graduate and postgraduate levels as well as residency programs in medical physics.

The AFOMP ETC strongly believes that there are growing interests and emphasis on the professional training and qualification of medical physicists within the medical community. We all understand that promoting education and training for medical physics requires continuous efforts and international collaboration, and the success of the ETC program will depend on not only the AFOMP ETC activities but also AFOMP members’ participation with great interests.

AFOMP is now an Image Gently Alliance Member

Kwan_Hoong Ng, Ph.D
President, AFOMP

On September 16, 2009 AFOMP has been officially accepted as an affiliate member of the Image Gently Alliance. See http://www.pedrad.org/associations/5364/ig/

The Alliance for Radiation Safety in Pediatric Imaging is a coalition of health care organizations dedicated to providing safe, high quality pediatric imaging nationwide. The primary objective of the Alliance is to raise awareness in the imaging community of the need to adjust radiation dose when imaging children. The ultimate goal of the Alliance is to change practice to reduce the risk of radiation-induced disease in the community.

The Alliance has chosen to focus first on computed tomography (CT) scans. The dramatic increase in the number of pediatric CT scans performed in the United States in the past five years and the rapid evolution, change and availability of CT technology and equipment well justify
The Professional Development Committee’s roles are:

1. To promote the professional development of AFOMP medical physicists
2. To develop policy and strategic action plan on the promotion of the status and recognition of the medical physics profession in AFOMP countries
3. To develop and make proposal for a registration and certification system for AFOMP physicists
4. To develop standards, guidelines and protocols on medical physics procedures and services, including dosimetry and QA protocols
5. To develop AFOMP policy statements on definition and roles and responsibilities of medical physicists and the physicist service manning scale for medical physics services
6. To develop codes of practice or standard on radiation safety and protection
7. To develop a system of Continuous Professional Development (CPD) for AFOMP

The Professional Development Committee for the next three years has almost been finalized. So far the confirmed members are:

- Howell Round (New Zealand)
- Kwan-Hoong Ng (Malaysia)
- Shigekazu Fukuda (Japan)
- Raju Srivastava (Nepal)
- Anchali Krisanachinda (Thailand)
- Lilian Rodriguez (Philippines)
- Joseph An Chen Shiau (Taiwan)
- Francis Tang (Hong Kong)
- Xiaowu Deng (PR China)
- Kuppusamy Thayalan (India)

This gives us a fairly good representation from quite different countries which is necessary as the AFOMP countries are quite diverse in their economic and social development as well as in the development of their medical systems.

I would still like to recruit two more members – one from a more developed country and one from a less-developed country. So if you would like to volunteer for the Committee, please do so. Or if you know of someone who would take an interest in the Committee’s objectives and would like to join the Committee, please nominate them.

Over the last few years Committee has concentrated on Role 5 and has produced two AFOMP policies in fulfillment of that.

We intend to focus on Roles 3 and 7 for the next three years.

There has already been a move by Raymond Wu to achieve Role 3 on a much wider scale as he reported in his article Creating an International Medical Physics Credentialing Board in the last AFOMP Newsletter. To do this on a truly international scale is a very difficult task, but we should be able to achieve it more easily in the AFOMP region as we now have a policy that defines what a clinical medical physicist is and the sort of education and training that they should have. The expansion of IAEA’s training programme throughout Asia will help to achieve a consistent education and training standards and also make it easier to achieve credentialing that can be recognized by more than one country.

In terms of Role 7, it would help to at least identify what CPD materials and events are already in place in AFOMP countries and negotiate arrangements whereby the material can be shared.

The Committee looks forward to a productive three years.

Effective Scientific Writing

Kwan Hoong Ng, Ph.D President, AFOMP

Many physicists may think, “If I wanted to write, I would have become a writer, not a scientist.” But being able to write effectively is important in any profession, and this is no exception for medical physicists, who have to communicate their research findings in a compelling manner that will not only inform, educate but also inspire further debate, discussion and critique.

Recognising the widespread need for developing scientific writing skills, a monthly series on Effective Medical Writing was launched in June 2008 in the Singapore Medical Journal. The series is authored by Prof Wilfred Peh (Editor of the Singapore Medical Journal) and Prof Kwan-Hoong Ng (Editor of the Biomedical Imaging and Intervention Journal).

We hope that you will benefit from this series, and find success in your writing endeavours as well as your educational and professional development.
One platform. Two modes of delivery.

CONTINUOUS, 360-DEGREE PRECISION FOR CHALLENGING CASES
The gold-standard in treatment quality, TomoHelical delivers thousands of beamlets from multiple rotations. Each beamlet is focused on the target and individually-optimized to contribute to the total tumor dose.

DISCRETE-ANGLE, SLIDING-BEAM EFFICIENCY FOR ROUTINE CASES
An all-new delivery mode for the Hi-Art system, TomoDirect allows users to quickly plan and deliver a range of TomoTherapy treatments—from up to 12 discrete angles—with a single turn of the key.

NEW TomoDirect brings even more power to the Hi-Art platform.
Medical Physics in general comprises three major sub-specialties: medical imaging, nuclear medicine, and radiation therapy. There are presently about 200 active medical physicists in Taiwan with most of them working in the hospitals and the remaining employed by universities, government agencies, and industries. Education and training of medical physicist in Taiwan are provided through formal education in universities and colleges, and through continuing education offered by professional societies such as the medical physics society. In addition, a certification process was also established to ensure the standards of the qualified medical physicist.

Education

For formal education, there are at present eleven universities and colleges in Taiwan offering undergraduate BS degree in medical imaging and radiological science. Out of these, eight universities also offer graduate MS or PhD degrees.

For undergraduate programs, the primary aims are to train radiographers for clinical work in diagnostic radiology, nuclear medicine and radiation therapy, and to prepare students for advanced graduate studies. Undergraduate courses include general physics, calculus, basic medical imaging, and radiological physics. Typical textbooks are “The Physics of Radiation Therapy” by Khan and “Radiologic Science for Technologists” by Bushong.

Clinical practicum courses are arranged with affiliated hospitals. These include routine clinical works such as treatment planning and quality assurance. There are about 650 graduates from these programs each year.

For graduate programs, the primary aims are to train medical physicists and to prepare them a career in clinical work or in research. Courses include advanced radiation physics, radiation dosimetry, radiation biology, image processing, and research seminars. Typical textbooks are “Introduction to Radiological Physics and Radiation Dosimetry” by Attix and “Radiobiology for the Radiologist” by Hall. The faculties of these programs in general have background in physics and nuclear engineering. Many of them had studied abroad and have clinical experiences in hospitals. There are about 50 graduates from these programs each year.

Continuing Education and Training

For continuing education, the medical physics society holds monthly seminars as well as annual meetings. The monthly seminars are held separately in the northern, central, and southern parts of Taiwan, and are rotated among different hospitals in order to foster a sense of participation and involvement. These monthly seminars are typically attended by 20 to 50 attendants. The annual meeting is held jointly with the radiology society and the radiation oncology society. The meeting lasts one to two days and includes oral and poster presentations, invited talks and commercial exhibits. In addition, symposiums on special topics are also held periodically according to the interests. For each attendance of these seminars or symposiums, continuing education credits are awarded to certified clinical medical physicists. This certificate is renewable every five years provided sufficient continuing education credits have been earned.

Clinical training is primarily provided by each employer for new employees, typically lasting from 6 to 12 months. Contents of these trainings differ widely depending on the practice and equipments used in each hospital. Trainings are also provided by vendors when introducing new technologies such as image guided radiation therapy, or by the medical physics society such as when implementing new QA procedures for compliance with new government regulations. There is currently no medical physics residency program.

Certification

The legislative process of establishing the proper regulations for a board certification mechanism for medical physicists in Taiwan is very difficult. After many years of hard work with very little results, the medical physics society in 1999 decided to set up the board certification process without government involvement. Based on the American and European experiences, and with the help of some members who had obtained board certification status abroad, a qualifying process including academic preparation, clinical experience, and examinations was established. With the support of the radiation oncology society and the Atomic Energy Council, the board certification mechanism was formed. The early certificates were given with emphasis on radiation therapy physics. At present, this mechanism is widely recognized by the medical community in Taiwan even without government sanction. Hospital based medical physicists are encouraged by their employers to take the board certification examinations. Many radiation oncology training programs have incorporated the concept of qualified medical physicists. Some hospital departments explicitly specify the board certification as one of the requirements for employment. As the radiological physics field becomes highly sophisticated, the need for keeping up with the knowledge becomes even more important. In 2003, the certification program started the continuing education extension to promote the maintenance of professional competence. The rules for con-

(continued on page 9)
continuing professional development for certificate renewal had been revised by the board certification committee in 2003. This rule change further improves the board certification mechanism. In 2007, the certification process for diagnostic imaging medical physics was included. We hope this will help to improve the quality of the fast growing medical imaging practice in Taiwan. As of 2009, there

The first Asia-Oceania Radiosurgery Physics Meeting (The 1st AORPM) was held on June 6, September, 2009 in Sheraton Wakerhill Hotel Convention Center in Seoul, Korea. It was held in conjunction with the Exhibition of Nuclear R&D Project and ISRS 2009. This is the first time to hold radiosurgery physics meeting in Asia. The AORPM will be held every two years in Asia or Oceania. The 1st AORPM was quite successful and have made an important role to promote research activities in radiosurgery physics, while offering a great opportunity of cultural exchange among the world-wide physicists. The theme of the 1st AORPM was “Recent Advances of Radiosurgery Technology”. The meeting provided a great opportunity for the attendees to update themselves on the current trends in the field of radiosurgery with world-wide distinguished speakers by exchanging scientific and technological information as well as strengthening friendship among the attendees. This is truly reflected by the special session, and other symposium sessions.

Venue for 1st AORPM: Seoul, Korea

Professor Frank Bova from the University of Florida, USA gave an outstanding plenary speech on “Radiosurgery at the University Florida 1988-2009”. Another plenary speaker Dr. Timothy Solberg from University of Texas, USA also gave a nice presentation on “Medical Physics Education, Accreditation and Certification Programs in the United States “. There were three excellent symposium sessions: “ QA and Dosimetry”, “New Technology in Radiosurgery” and “Education and Training for Medical Physicists”. The symposium on “Education and Training for Medical Physicists” was an important event of the 1st AORPM and was moderated by Dr. Raymond Wu, Chair of ACMP and Dr. Kiyonary Inamura, President of AFOMP with four key panelists, Drs. Chen-Shou Chui, Yimin Hu, Rena Lee and Kiyonari Inamura from Taiwan, China, Korea, and Japan, respectively.

The conference was attended by 150 participants. Abstracts considered within the scientific program were 13 invited oral presentations, and 17 posters. We also held a cooperative program “The Exhibition of Nuclear R&D Project” with all the scientists who participated in the Nuclear R&D Program associating with medical physics, which were fully supported by the Korean government (Ministry of Education, Science and Technology). The exhibition presentations at five booths were quite impressive to show state of the art development in the field of medical physics.

A series of social activities was arranged with the Opening Ceremony and Banquet held on a beautiful places looking over the Han river. The 2nd AORPM will be held in China in 2011.
Best® teletherapy units have provided more than 500 million cancer treatments around the world in a proven, reliable and cost-effective manner since they went into service in the 1960’s.

- Asymmetric jaws for advanced treatment capabilities
- Ability to interface with all major R&V systems
- Completely integrated Avanza treatment table
- Fully computer-controlled machine parameters

We are taking Brachytherapy, IMRT, IGRT and DART to greater heights!

The Best® nomosSTAT™ Serial Tomotherapy System can help your clinic deliver non-coplanar treatments on an existing linac or teletherapy unit for a lot less than you might think.

- Deliver higher doses to the target while sparing sensitive structures using conformal plans with steep dose gradients
- Increase conformity by delivering non-coplanar treatments using multiple couch angles
- Upgrade your clinic’s capabilities to perform intra- and extra-cranial IMRT as well as radiosurgery treatments using your existing equipment

© 2008 Best Medical International, Inc.
Two Conferences with Medical Physics Involvement in Australia

Tomas Kron, PhD, Immediate Past President ACPSEM

It is often difficult to find funding or time to attend scientific conferences. This is confounded by the fact that conferences typically are held overseas and significant travel (associated with significant costs) is required. Therefore, 2009 was a significant year because the Australasian College of Physical Scientists and Engineers in Medicine (ACPSEM) was involved in two local conferences. I was privileged to attend both ACPSEM (co-)sponsored conferences in a single year: the Combined Scientific Meeting, October 22 to 25 in Brisbane and EPSM 09, November 8 to 12 in Canberra. I am very grateful to my employer, Peter MacCallum Cancer Centre for not only giving me time off for both meetings but also for footing the bill. My own 'contribution' was attending countless meetings (some as early as 7.30 in the morning and some as late as 9.30 at night), presenting a handful of papers and dancing at several social functions — overall a good deal. Attending two conferences back to back provides a lot of food for thought - scientifically as well as in many other aspects... for those who want to read on, here are some of my personal observations:

The Combined Scientific Meeting (CSM) had been a long time in the making. For more than three years the three sponsoring organizations, the Royal Australian and New Zealand College of Radiologists (RANZCR), the Australian Institute of Radiography (AIR) and the ACPSEM were planning to hold a combined meeting. The Faculty of Radiation Oncology (FRO) within RANZCR was sometimes also mentioned as a forth sponsoring organization and on several occasions the Presidents of the four organizations were present. While the format is inspired by conferences such as the ones of the American and European Societies of Therapeutic Radiation and Oncology (ASTRO and ESTRO), it is important to note that the sponsoring organizations represent radiation oncology and radiology professions. This proved to be a particular bonus for radiotherapy physicists like myself who need to brush up on diagnostics in the context of more and more image guidance in the radiotherapy clinic.

The conference was attended by more than 1700 delegates and featured up to 10 parallel sessions with more than 10 international speakers. Given the expected number of participants, ACPSEM was the minor partner with a 10% stake; however, I never felt that ACPSEM was treated as the minor partner at a meeting with capital C for 'collaboration'.

The conference was held in the Brisbane Exhibition Centre which is not a small venue. No surprise, the trade exhibition was equally huge. When I entered first someone next to me noted: "Woah, am I at AAPM?" Nicely summed up.

I very much enjoyed the scientific program even though it was often hard to decide which session to go to. One of the weaknesses was the fact that many sessions were organized along professional lines rather than according to the topic. Therefore we had separate image guidance sessions for clinicians, for physicists and RTs rather than having all professions discussing the same topic. As a member of the organizing committee I must take some of the blame for this - it is easier to review and organize papers according to the affiliation of the presenter which is ticked on the submission form. Something to consider for next time... The invited physics speakers, David Jaffray, Rock Mackie and Tony Seibert added tremendous value to the conference with thought provoking discussions about how new technology can be proven. Several workshops on issues such as safety, contouring and scientific writing complemented the program and provided opportunities to learn. Sessions and presentations on quality, workforce and the role of Australia and New Zealand in the Asia Pacific Region rounded up a most stimulating conference. It is likely that we will be involved in a similar meeting again in 2012 in Sydney. Bigger and better than the movie (2012 that is)...

EPSM was smaller. However, it demonstrated how one can bring out the advantages of a conference of 250 in a near perfect venue. Most presentations were scheduled for 20 minutes with ample time for discussions. Similarly, the format (and the dietary supplements, namely wine and cheese) for the poster session ensured lively discussion and professional interaction. Being in Canberra, the capital of Australia, one of the highlights was a presentation of Brian Richards from the Department of Health and Ageing (DoHA) on 'Health Technology and Horizon Scanning' (basically on how technology is assessed in Australia in order to determine where health dollars should be spent). Also the other plenary speakers provided great material for discussion and showed that the mix of biomedical engineering and medical physics makes sense. I enjoyed particularly the contributions of Ervin Podgorask from McGill University in Montreal - for those who missed it, he is the editor of the text book we use for the Radiation Oncology Training Education and Accreditation Program (TEAP) within the ACPSEM and his discussions about medical physics education and the health systems in North America were simply inspiring.

The trade exhibition at EPSM was of course smaller than at CSM - however, also this had its attractions. Whenever did I last have such a good chat to the guys at the Elekta booth (they had pretty bits from old linacs on display) and caught up with the best dressed guy at CMS Alphatech and many others. The professional coffee maker in the trade exhibition also helped to a great and relaxed atmosphere.

For the first time we (ie ACPSEM with generous support from the Australian Department of Health and Ageing) ran a two day summer school in conjunction with the conference. About 30 participants - mostly TEAP registrars and radiation oncology medical physicists (ROMPs) learned about theoretical and practical aspects (thanks to Canberra Hospital) of Intensity Modulated Radiation Therapy (IMRT) with Juergen Richards from the Christchurch as the invited 'overseas' teacher. I believe that a summer school such as this is a model for the future for our professional group. Both registrars and experienced physicists can benefit from a focused workshop with a few local and overseas experts combining theoretical and practical aspects of a single topic. We will run another sponsored summer school on Image Guided Radiation Therapy (IGRT) next year in Melbourne - as we need to cap the number of participants it will be important to register early.

(continued on page12)
Lots of people have put a lot of work in these conferences and workshops. From ACPSEM I would like to acknowledge Howell Round and Lawrie Sim who with competent support of John Kenny worked on the organizing and scientific committee of CSM. Brendan Hill, May Whitaker, Peter Greer, Sean Geoghegan and Paul White helped to make EPSM a success. My apologies to all the others who were involved - too many to mention. A final thank you must go to the Department of Health and Ageing in Canberra - their Radiation Oncology Department sponsored both conferences and allowed many medical physics registrars and students to attend. It is very encouraging to see that the continuing professional education provided by both conferences is appreciated by all - I am sure in the end our patients will benefit from the material presented and the discussions held...

In summary, two different but highly successful conferences. It may be also worthwhile to point out that both conferences benefitted from the 'international' flavor as the sponsoring organizations represent both New Zealand and Australian colleagues. The two meetings represented two rather different concepts and combined different professional groups. From my perspective ACPSEM benefited from both.

Two Conferences with Medical Physics Involvement in Australia (continued from page 11)

Lots of people have put a lot of work in these conferences and workshops. From ACPSEM I would like to acknowledge Howell Round and Lawrie Sim who with competent support of John Kenny worked on the organizing and scientific committee of CSM. Brendan Hill, May Whitaker, Peter Greer, Sean Geoghegan and Paul White helped to make EPSM a success. My apologies to all the others who were involved - too many to mention. A final thank you must go to the Department of Health and Ageing in Canberra - their Radiation Oncology Department sponsored both conferences and allowed many medical physics registrars and students to attend. It is very encouraging to see that the continuing professional education provided by both conferences is appreciated by all - I am sure in the end our patients will benefit from the material presented and the discussions held…

In summary, two different but highly successful conferences. It may be also worthwhile to point out that both conferences benefitted from the 'international' flavor as the sponsoring organizations represent both New Zealand and Australian colleagues. The two meetings represented two rather different concepts and combined different professional groups. From my perspective ACPSEM benefited from both.
Elekta VMAT: volumetric intensity modulated arc therapy solutions

Shorter treatment time, highly precise tumor targeting and lower dose. Elekta VMAT is a new enhanced treatment delivery technique which varies the radiation beam during treatment by simultaneously manipulating the gantry position and speed, MLC leaves, back up diaphragm, dose rate and collimator angle. Elekta VMAT provides the ability to deliver more radiation to the target while sparing healthy tissue, in significantly less time than existing therapies. Accurate targeting for VMAT is essential and this is achieved by incorporating VolumeView™ 3D volume imaging to create high-contrast images with ultra-low dose.
The Congress

The 9th Asia-Oceania Congress of Medical Physics (AOCMP) was held in conjunction with the 7th South-East Asian Congress of Medical Physics (SEACOMP) at the magnificent Empress Hotel and Convention Center, Chiang Mai, Thailand during 22-24 October 2009. The event was the annual scientific meetings of AFOMP and SEAFOMP for 2009 and was organized jointly by Thai Medical Physicist Society and Faculty of Medicine, Chiang Mai University. The chairperson of the organizing committee was Professor Anchali Krisanachinda of Chulalongkorn University, Bangkok, Thailand. IOMP contributed a funding in support of the running of a pre-congress training programme.

Scientific Programme

The congress was attended by 303 participants (199 local and 104 overseas) and 55 local and international technical exhibitors. The scientific programme was very well designed and organized. A total of 150 invited talks, proffered papers and posters were presented. About 50% of the presentations were on radiation oncology, 30% on imaging, and 20% on education and training and other medical physics topics. 27 experts from 11 countries were invited to present their research work and/or conduct training courses. The programme and proceedings was very nicely prepared and the editor and designer of the book should be congratulated for the quality of their work.

Training Programme

A very useful and well attended one-day pre-congress training programme was organized. The programme consisted of 4 training courses which were run simultaneously in parallel and involved 17 faculties. It included a refresher programme on digital imaging, digital mammography, and laser and ultrasound therapy, a workshop on IMRT, a workshop on 3-D image guided advanced brachytherapy, and a workshop on the use of Image-J and MS-Excel for CT Performance Study.

Awards

A in previous annual scientific meetings, AFOMP provided travel supports for 10 young medical physicists (selected by an award selection committee) from developing countries in the AFOMP region to attend the congress in Chiang Mai. Also, as a means for attracting and motivating student participation, AFOMP presented 6 awards for the best student presentations, namely, Best Oral Presentation in Radiotherapy Physics, Best Oral Presentation in Imaging Physics, Best Poster Presentation, Outstanding Oral Presentation in Radiotherapy Physics, Outstanding Oral Presentation in Imaging Physics, and Outstanding Poster Presentation. The winners, each of whom received a prize money as well as a certificate, were selected according to a set of scoring criteria by a panel of judges consisted of Professor Gary Fullerton of USA, Professor Franco Milano of Italy, Professor Todd Pawlicki of USA, Professor Pradip Deb of Australia, Dr. James Lee of Singapore and chair by Dr. K.Y Cheung.

Conclusion

The congress was a complete success. It was very well organized with excellent scientific and educational programmes. The standard of the abstract presentations was in general much higher than those of previous meetings. The venue facilities were most satisfactory. The chairpersons and members of the organizing and scientific committees should be congratulated for the success of the event. They set a new benchmark for the organizers of future meetings. Thai Medical Physicist Society has demonstrated her ability in hosting major scientific events such as ICMP and WC.
Bhabhatron – II
India’s Advanced Telecobalt Machine

Technical collaboration with Bhabha Atomic Research Centre, Mumbai, India

Effective and Safe Cobalt Therapy

- 0 X 0 Collimator
- 3 X 3 Treatable Field
- 8hrs Battery Backup
- Fully Computer Controlled
- Carbon Fiber Couch Top
- Patient Photo Display

Optional Features:

- Asymmetric collimator
- Iso Wedge
- Auto decay Correction
- Remote Diagnosis

Also Available
Moving Laser
3D RFA
RT Simulator
3D TPS

Panacea Medical Technologies Pvt Ltd
(An ISO 9001:2000 Certified Company)
7A/1, Kadugodi Industrial Area, WhiteField, Bangalore-560067 – India
Tel: +91-80-42428700/28451171 Fax: +91-80-42428710
Website: www.panaceamedical.com Email: contact@panaceamedical.com
AKNOWLEDGEMENTS
First of all, I would like to express my sincere gratitude to the Asia-Oceania Federation of Organizations for Medical Physics to assist me in participating Medical Physics Congress in Chiang Mai, Thailand.

On the other hand, I would like to thanks the speakers enthusiastically provided me the update knowledge about digital imaging, IMRT or the new technologies in Medical Physics.

Finally, I would like to thanks the organization held such a thorough Congress and created opportunities for speakers as well as students share their knowledge and experiences.

1. INTRODUCTION
Nowadays, Medical Physics plays an important role in healthcare system. Many modern technologies are used in diagnostic and therapy such as CT, MRI, Linear Accelerator, PET, SPECT etc… Therefore, it is necessary to improve the knowledge about medical Physics as well as learn how to master the principle of these machines in operating, QA and QC. So the Congress of Medical Physics in Chiang Mai is very useful for me to update the new research of the authors from many countries. This report aims to review the knowledge that I learned from the Congress. And some plans intended apply in Vietnam.

With my limited knowledge, there are some researches I cannot comprehend deeply. However, I will try to study in near future. I hope that my effort will contribute in developing the Medical Physics field in Vietnam.

2. What I was learnt at the Medical Physics Congress:
- The orientation of developing the Medical Physics in Asia:
 The presentations of Prof. Kiyonari Inamura and Prof. Kin Yin Cheung showed that improving qualification of Medical Physicists was much treasured. I found out the important elements in promoting the standard of practice and profession status of medical physicists. In addition, I have a lot of sympathy for view of Prof. Kin Yin Cheung that “there was a strong desire amongst the medical physicists to see the implementation of a more structured training system for the medical physics trainees and a professional certification or registration scheme for the qualified medical physicists”.

- About Scientific Knowledge:
 - Advanced Digital Imaging was presented by Dr Kwan-Hoong Ng, Dr Ho-Ling Anthony Liu and Dr Napapong Pongnapang. From the lecture, I can learn the methods for image formation in digital imaging, learn acceptance testing procedures for digital imaging equipments. On the other hand, I can learn acceptance testing procedures for digital image display devices and quality control methods for digital imaging and image display.

 - Radiation Therapy Physics – IMRT: The basic concepts and methods of IMRT was presented clearly. Otherwise, IMRT QA planning was mentioned by Jie Shi speaker from Sun Nuclear Corporation, Melbourne, Florida, USA. He introduce how to evaluate the IMRT QA results affected by different TPS beam modeling errors, including volume averaging and MLC transmission, Identify the delivery and setup errors for IMRT and provide proper tools to control different steps of the IMRT QA process. Thanks to this knowledge, I can understand deeply about the principle of the machines and have a proper planning QA.

 - Advanced Treatment Technique in Radiation Therapy by Dr. Todd Pawlicki provided me the overview of the modern technology in Radiotherapy. The lecture of Dr. Franco Milano about Trend in Reference Dosimetry in Radiotherapy and Diagnostic, I realized that it is necessary to have the international measurement system for radiation metrology assures traceability and consistency of radiation measurements in reference conditions by providing users with calibrated radiation measuring instruments that are traceable to primary standards. Furthermore, three levels of traceability can be identified in the dosimetric chain: the traceability of dosimeters through standards developed by primary and secondary standard laboratories, the use of calibration protocols or code of practice for the determination of absorbed dose in reference conditions and finally protocols or methods for the determination of dose to an arbitrary point in a patient.

 - PET CT Treatment Planning by Prof. Chatanya R Divgi, this presentation focus on the clinical use of radioactive tracers that permit the imaging from PET. Imaging of lung cancer has been revolutionized with the use of fluorine-18-labeled fluorodeoxyglucose (18F-FDG), an analog of glucose that can be imaged using PET. Glycolysis is increased in nonmalignant conditions, including inflammation and 18F-FDG PET is a sensitive method for evaluation of active inflammatory disease.

In addition, there are many other qualified presentations that I could study new measurements method, how to improvement the quality of images, quality assurance and quality control. F-FDG PET is a sensitive method for evaluation of active inflammatory disease.

- About international students
 I realized that they have a great spirit in studying and research. They are very smart and friendly. I can learn much from them both knowledge and experiences.

3. Plans application Medical Physics in Vietnam:
Vietnam is a new member of Asia-Oceania Federation of Organizations for Medical Physics. Medical Physics is considered a new concept in Vietnam. In recent years, the application new technology in radiotherapy and diagnostic is developing quickly. Therefore, the requirement is qualified staffs that can not only work effectively in hospital, but also have new researches to improve quality of treatment. So, it is very necessary to have a long-term plan for education training and academic research. These include:

1. Set up a VAMP website to facilitate the development of the virtual education, training resource centre and the scientific database as well as improving communication with mem-

(continued on page 17)
2. There is need a cooperation between the University and Hospital to support students and create a good condition for practicing in real treatment.
3. Establishment a group to share and provided the specific knowledge of medical physicists.

Plans in my work
I work in PET-CT & Cyclotron Unit. So I am very interested in quality imaging of PET-CT, Quality Assurance and Quality Control.
1. Improvement in quality assurance and quality control in PET-CT follow the criterion of IAEA. Simultaneously, publish documents about QA and QC for students in Vietnam.
2. Plan a research to evaluate the radiation dose from positron-emitting radiopharmaceutical in patient. The purpose of the study is to determine the patient effective dose from F-18 (FDG) in whole-body PET imaging.

CONCLUSIONS
Medical Physics has become an important aspect of the treatments by new technology. Their primary role is to assure that the highest level of quality care is maintained. The medical physics group design and implement the quality assurance program in radiation oncology or quality image in diagnostic. They are responsible for selecting and specifying the types of equipment that are used in radiation therapy. After new equipment is installed, the medical physicist assures that the equipment meets or exceeds specifications. Therefore, qualified medical physicists are also very important.

RECOMMENDS
I have a strong desire to have a opportunity to study and discover new achievements about Nuclear Medicine in a professional and logical method at the developed countries. I believe that I not only can widen my knowledge but also can get deep experiences effectively after the course. And I hope that I can contribute more practical and useful discoveries to my country or participate in training new Vietnamese students’ generation in future.

A participant’s perspective
Victor Angelo C. Margallo, Philippines
The Oncology Club and SAARC Federation of Oncologists in Bangladesh have honored four “outstanding personalities of the Decade 2000-2010” in Radisson Water Garden Hotel, Dhaka on December 4, 2009, in recognition to their invaluable contributions in their respective arenas.

The honoured persons are:

- Nobel Laureate Prof. Dr. Mohammad Yunus, Founder of Grameen Bank and Microcredit.
- Mrs. Valerie Taylor, Founder of Centre for the Rehabilitation of the Paralysed.
- Dr. M. M. Amjad Hussain, Founder of Khwaja Yunus Ali Medical College and Hospital.
- Prof. Dr. Golam Abu Zakaria, Pioneer of Medical Physics in Bangladesh.

This is the first time in Bangladesh that a medical physicist has been honored with a highly prestigious award by the Radiation Oncology Organization for his unique contribution to establish Medical Physics in Bangladesh. The Oncology Club has honored Prof. Dr. Zakaria for his untiring effort to improve medical physics especially in the treatment of cancer patients in Bangladesh since decades. I believe this is a great achievement for this new profession of Medical Physics in Bangladesh as a whole.

The concept of Medical Physics has been started first in Bangladesh in the early eighties by Dr. Golam Abu Zakaria, Chairman, Dept. of Medical Radiation Physics, Gummersbach Hospital, Academic Teaching Hospital of the University of Cologne and Professor of Clinical Engineering, Anhalt University of Applied Sciences, Germany. Since 1984 he used to give lectures and presentations about physics, medical physics, radiotherapy and radiology for students, scientists and medical doctors in Bangladesh and supervise master and Ph. D students in Germany. Then he initiated and organized five seminars/workshops in Bangladesh in cooperation with the German Society for Medical Physics (DGMP) in the years 1996, 1997, 1998, 1999 and 2000 with about 100 participants/year (physicists and radio- oncologists). The main aim of these seminars was to inform and to motivate the physicists to become medical physicists. As a result, Bangladesh Medical Physics Association (BMPA) was founded in 1998 and later registered as BMPS (Bangladesh Medical Physics Society) in 2009.

Around the same time in 2000 a full-fledged “Department of Medical Physics and Biomedical Engineering” was founded at Gono University (a private university in Savar, Dhaka, Bangladesh) initiated by Dr. Golam Abu Zakaria. As a Visiting Professor and Coordinator of International Cooperation of the department he has established a teacher and student exchange programme for Medical Physics between Gono University, the Heidelberg University and the German Cancer Research Centre (DKFZ) with the financial support of the German Academic Exchange Service (DAAD). About 20 students from Gono University were given the possibility to absolve a guest-semester as well as laboratory works in Heidelberg in the time between 2003 and 2006. The students passed their master thesis under his supervision. Presently they are working in different universities and hospitals in Bangladesh. Due to that, Bangladesh has a group of well trained specialists who build a base of medical care for cancer patients. Recently he also has started to build up more manpower in this field and side by side arranging training for the upgrade of medical physicists as well as for the young radiation oncologists in Germany.

The Medical Physics and Biomedical Engineering in Bangladesh is gaining importance day by day as cancer treatment in Bangladesh is entering in a new era from the conventional therapy to the conformal one. At present the Bangladesh population is estimated about 130 millions and the number of cancer patients equals 2000 out of 1000'000 inhabitants per year. Therefore Bangladesh needs 130 centres for radiotherapy. A minimum of 500 medical physicists will be needed for these radiotherapy centres in future.

Prof. Zakaria also addressed Bangladesh Government and Private institutions/Universities to open courses of Medical Physics to meet up the future need. At this moment we have only few medical physicists. So many steps for improving the medical physics situation are untouched like the training programme for qualified medical physicists, professional development etc. He also expect that other international organizations like AFOMP will come forward to build up qualified medical physicists and other tasks related to it in Bangladesh in cooperation with BMPS.

We congratulate Prof. Zakaria for this honorable award and wish us a continuous fruitful cooperation with him also in the
9th Asia-Oceania Congress of Medical Physics (AOCMP) &
7th South-East Asian Congress of Medical Physics
(SEACOMP).

I attended the congress for three full days on the 22-24
October 2009.

22 October 2009 : Pre-Congress Program

The pre-congress program that I attended are Advanced
Digital Imaging refresher course and also a workshop on Laser
and Ultrasound in Therapy.

From these courses I learned and gained more knowledge
especially in the topic of acceptance testing procedures for digi-
tal imaging equipment and display devices. Also quality control
methods for the digital imaging and image display. As an addi-
tional of practical tips that had been given by the speakers are
very useful too.

These had given me more input on developing and imple-
menting the quality control program effectively especially on CR,
DR and soft copy display for the Bio-Medical Imaging
(Radiology) Department in University Malaya Medical Centre,
Kuala Lumpur. The UMMC Medical Physics Unit will play it’s
role on developing, helping & continuously support Radiology
Department where this QC program will be implemented step by
step.

23-24 October 2009 : Congress Program

It was learned from the lectures that the importance and
significant role of medical physics in quantitative imaging of the
research imaging centre. Also an informative and practical lec-
tures of radiation therapy on treatment technique, reference do-
simetry in RT and Diagnostic Radiology. The symposia of edu-
cation and training & professional development in Medical
Physics were informative and also an eye-opener on what was
happening in medical physics profession in the ASEAN coun-
tries.

The lecture that’s been given by the IAEA director, Dr.
Chemm was definitely the highlight for the medical physicist
that works with diagnostic imaging department. The lecture gave
a strong statement on medical physicist involvement in diagnos-
tic imaging from the physician side of view. As a physicist in
diagnostic imaging, it was a good and inspirational message for
us to give the best service, get more involved and assist the phy-
sician decision making especially in radiation protection, usage
of radiation equipments and give a good quality image.

Conclusion

It’s been a very informative and interesting topics that the
congress covered. Where it covers almost everything that medi-
cal physics work in a field of radiotherapy, nuclear medicine &
diagnostic imaging. The knowledge that’s been gained from the
congress will be shared and discussed with other fellow medical
physics colleagues.

Dear AFOMP secretary general and the president of Thai
medical physicist society,

I was learnt many things especially the refresher course by Prof
Chen-Shou Chui. He presented “The physical aspects of inten-
sity-modulated radiation therapy”. This lecture made me ob-
tained more knowledge and understandable in IMRT. I can apply
this knowledge into the commissioning of our new IMRT ma-
chine for next year.

Also the lecture by Prof Franco Milano presented “Trend in
reference dosimetry in radiotherapy and diagnostic radiology”.
We need to beware of using the detector measuring the small
fields due to the volume averaging effect. The small fields will be
used in our future IMRT technique. To know the caution makes
me obtain more accuracy of measuring the absorbed dose of the
small fields.

The workshop of “3D image guide advanced brachytherapy”
helped me to have broader the trend in brachytherapy. New
definition of organs at risk and target was known. The careful
attention to change from 2D to 3D brachytherapy was critical. It
makes me aware more of using images for treatment planning in
brachytherapy.

Varieties of proffered papers presentation in the congress made
me to have more inspiration to do more research, to have the
connection, and to have fun of learning the new knowledge.

Above all, I would like to thank the committee to give me the
travel award for attending this congress. I hope my future work
might contribute some amount for this community.
Dear Colleagues:

We cordially invite you to attend the 10th Asia-Oceania Congress on Medical Physics (10th AOCMP) to be held in Taipei, Taiwan, October 15-17, 2010. The first day of the congress, October 15, is designated as the Pre-Congress Conference. The program will focus on the education and training of medical physicists. Refresher courses and workshops will be given on topics of imaging and therapy physics. On the second and the third day, October 16 and 17, leading experts from the world will be invited to present the latest advances in medical imaging and therapy physics in various symposiums. In addition, a Young Investigators Symposium is organized to encourage young physicists to present their works. Sessions for proffered papers are also available as oral or poster presentations.

Taiwan is known for her beautiful natural scenery and cultural diversity. Taipei, in particular, is a city rich in both the traditional and the modern, as epitomized by the National Palace Museum and Taipei-101, the second tallest building in the world. The climate in October is also pleasant. Planning and organization of the congress are currently under way. More information and progress about the congress will be posted on the AFOMP website as they become available.

We sincerely welcome you to Taipei and look forward to seeing you at the 10th AOCMP.

Sincerely,

Chen-Shou Chui, PhD

Announcement for the 10th Asia-Oceania Congress on Medical Physics

Chen-Shou Chui, PhD, FAAPM, DABR
President, Chinese Society of Medical Physics, Taipei.

Fukuoka (Japan), Host city of 11th AOCMP (2011)

Voting for selecting host country from EOI submitters to 11th AOCMP (Australia, Bangladesh, Japan, Singapore) was performed by AFOMP Executive officers plus Subcommittee Chairs. Fukuoka, Japan was determined as the host city of 11th AOCMP (2011) during AFOMP Executive Committee Meeting (Chiang Mai, Oct. 23, 2009).
THE BEST SOLUTION OF EXTERNAL BEAM THERAPY FOR CLINICIANS BY CLINICIANS

CorePLAN Treatment Planning System

CorePLAN Key Features

- Windows-based treatment planning system
- Highly efficient planning with advanced contouring tools
- Conforming DICOM3 and DICOM-RT standards
- Photon dose calculation with CCC and Clarkson Algorithm
- Electron dose calculation with Hogstrom Algorithm
- Thorough after sales service and technical support

CorePLAN Functions

- Efficient image acquisition through PACS
- 3D rendering of plans including beams, VOIs, etc.
- Intuitive MLC, block, wedge edit user interface
- High performance and high speed dose calculation
- Advanced plan evaluation with NTCP and DVH
- Flexible plan management with multi-plan function

* Academic version is available.

Seoul C&J, Inc.
10F Cheonlok bldg., 1351-3 Shinkil-Dong, Youngdeungpo-Ku, Seoul, South Korea. 150-057.
Tel: +82-2-782-4810
Fax: +82-2-786-2509
E-mail: sales@scnj.co.kr, support@scnj.co.kr
Web: http://www.coreplan.com
AFOMP News

Professor Barry Allen was elected president of the International Union of Physicists and Engineers in Medicine (IUPESM) at the September world congress in Munich, Germany. This is the peak body of some 140,000 medical physicists and biomedical engineers around the world. Prof Allen was previously the president of the International Organisation of Medical Physics (IOMP), the first Australian to hold this post.

Prof Allen's policy platform is to assist developing countries in medical technology services. To this end he convened in 2006 the international Health Technology and Training Group (IHTTG) under the IUPSEM. He has investigated and reported on provincial technology reviews in the Mekong Delta in Vietnam, the Philippines and Vanuatu. He convened and chaired a session on appropriate technology at the recent IUPESM world congress in Munich. Last year he convened a workshop on palliative radiotherapy for developing countries in Saigon. A workshop on Telemedicine is planned for early 2010.

Calendar of Events

22-25 May 2010
American College of Medical Physics Annual Meeting; San Antonio, TX, USA
http://www.acmp.org

31st May to 3rd June 2010
The 16th International Conference on the Use of Computers in Radiation Therapy, (ICCR2010) will be held in Amsterdam, Netherlands.

The official website is: http://www.iccr2010.org/

23-26 June 2010
The Computer Assisted Radiology and Surgery (CARS) 2010 will be held in Geneva, Switzerland.

The deadline of abstracts/papers submission is January 11, 2010.
For more detailed information, please visit website: http://www.cars-int.org

18-22 July 2010
American Association of Physicists in Medicine (AAPM) Annual Meeting; Philadelphia, PA USA
http://www.aapm.org/meetings/

30-31 October 2010
The 10th AOCMP will be held in Taipei, Taiwan.

Answer to AFOMP Quiz #6
This image was generated from the table detector of an indirect digital radiography system. The flat-panel detector from the particular manufacturer is made by stitching four quadrants together to form the full-field image. The artifact is caused by imbalance or failure of one of the detector quadrants, which exhibits as unmatched brightness and/or histogram distribution in the first quadrant as compared to the remaining parts of the image. Re-calibration of the detector system did not solve the problem, therefore replacement is required.

Officers and Council of AFOMP
President: Kwan-Hoong Ng, Ph.D.
Department of Biomedical Imaging (Radiology), University of Malaya
50603 Kuala Lumpur, Malaysia
Tel: +60-603-7949-2088 Fax: 603-7958-1973
Email: ngkh@um.edu.my

Vice President: Yimin Hu, Ph.D.
(1)Chaoyang Qu Fanjiayuan Nanli No. 17, Department of Radiation Oncology, Cancer Institute (Hospital), Beijing 100021, China
Email: yiminhu888@163.com

Past President: Kiyonari Inamura, Ph.D.
Professor Emeritus Osaka University
Email: ina-kiyo@muse.biglobe.ne.jp

Secretary General: Tae-Suk Suh, Ph.D.
Dept. of Biomedical Engineering College of Medicine, The Catholic University of Korea, 505 Bampo-dong, Seocho-gu, Seoul, 137-701, Korea
Tel: +82-2-590-2414 Fax: +82-2-532-1779
Email: suhsanta@catholic.ac.kr

Treasurer: Anchali Krisnachinda, Ph.D.
Department of Radiology, Faculty of Medicine, Chulalongkorn University, Rama IV Road, Bangkok 10330 Thailand
Tel: +66-662-256-4283~4 Fax: 662-256-4162
Email: kanchali@yahoo.com

AFOMP Committee Chairs
Education and Training Committee
Chair: Hec-Jong Kim, Ph.D.
Department of Radiological Science/Radiology, Yonsei University, College of Health Science/Medicine, Seoul, Korea
Email: hjkim@yumc.yonsei.ac.kr

Professional Development Committee
Chair: Howell Round, Ph.D.
Department of Engineering, University of Waikato, Private Bag 3105 Hamilton , New Zealand 3240
Email: h.round@waikato.ac.nz

Scientific Committee
Chair: Xiaoxiong Huang, Ph.D.
Institute of Biomedical Engineering, Ji Nan University, Guang Zhou, 510632 China
Email: txhuang@jnu.edu.cn

Funding Committee
Chair: Kiyonari Inamura, Ph.D.

AFOMP correspondence should be addressed to: Drs. Kwan-Hoong Ng and Tae-Suk Suh
Advertising requests should be addressed to: Dr. Barry Allen
Event information should be addressed to: Dr. Kiyonari Inamura
AFOMP webmaster: Mr. Jeong-Hoon Park
(jhoon@catholic.ac.kr) and Mr. Seungjong Oh
(bhead@catholic.ac.kr)
AFOMP newsletter contact: Mr. Seungjong Oh
(bhead@catholic.ac.kr)
Aquilion64, much more than an excellent CT: The best on his class, the best seller worldwide.

Aquilion™ 64, the most advanced 64 detector CT system available, delivers:
- True volumetric imaging
- 64 simultaneous 0.5 mm slices acquired per rotation
- Superior spatial resolution at 0.35 mm for small vessel detail
- Superior low-contrast resolution for soft plaque visualization
- Innovative workflow solutions like BURECardio™ for automated cardiac scanning

CorE64 - Coronary Evaluation is a joint project of Toshiba with the following institutions:
- Johns Hopkins University School of Medicine, USA
- Beth Israel Deaconess Medical Center, Harvard Medical School, USA
- Humboldt University, Campus Charite Mitte, Germany
- INCOR Heart Institute of the School of Medicine Hospital, Sao Paulo University, Brazil
- Iwate Medical University, Japan
- Johns Hopkins Bayview Medical Center, USA
- Leiden University Medical Center, The Netherlands
- Mount Elizabeth Hospital, Singapore
- Toronto General Hospital, University Health Network and Mount Sinai Hospital, Canada

TOSHIBA
TOSHIBA MEDICAL SYSTEMS CORPORATION
http://www.toshibamedicalsystems.com/(Japan)
http://www.toshiba.com/(ams)(North America)
http://www.toshiba-europe.com/medical(Europe)